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Abstract. A new simple Young diagrammatic method for Kronecker product€)¢i) and

Sp(2m) is proposed based on the representation theory of Brauer algebras. A general procedure
for the decomposition of the tensor products of representationg ey andSp(2m) is outlined,

which is similar to that fotU (n) known as the Littlewood rules, together with trace contractions
from a Brauer algebra and some modification rules given by King.

1. Introduction

Representation theory of orthogonal and symplectic groups plays an important role in many
areas of physics and chemistry. It arises, for example, in the description of symmetrized
orbitals in quantum chemistry [1], fermion many-body theory [2], grand unification theories
for elementary particles [3], supergravity [4], interacting boson and fermion dynamical
symmetry models for nuclei [5-8], nuclear symplectic models [9, 10], and so on.
Reductions of Kronecker products of representation® 6f) and Sp(2m) groups were
outlined in a series of works by King and his collaborators [11-15] based on the pioneering
work of Murnaghan [16], Littlewood [17, 18], and Newell [19] on character theory and
Schur functions. A similar approach was then revisited by Koike and Terada [20], in
which some main points were rigorously proved. On the other hand, a Young diagrammatic
method for Kronecker products for Lie groups of typBs C and D was proposed by
Fischer [21]. However, as pointed out by Giraedlial [22, 23], rules for the decomposition
of tensor products foSO(n) and Sp(2m) given in [21] are numerous; some of them are
even ambiguous. After introducing generalized Young tableaux, with negative rows for
describingS O (2m), Girardi et al gave a formula for computing the Kronecker products
for SO(n) and Sp(2m) in [22, 23]. The formula can be used to compute both tensor
and spinor representations §0 (n) and Sp(2m). However, no proof was given for their
formula. In [24] Littelmann proposed another Young tableau method to compute Kronecker
product of some simply connected algebraic groups based on character theory. The feature
of the method is that it does not use the representation theory of symmetric groups. Later,
Nakashima proposed a crystal graph base [25], together with the generalized Young diagrams
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for the same problem. This method applies equally well togttamalogue of the universal
enveloping algebras of types, B, C, and D [26].

In addition to the usefulness of these groups in many applications, the decomposition of
the Kronecker products of orthogonal and symplectic groups has long been an interesting
problem in mathematics, which was first considered by Weyl [27] and Brauer [28]. Besides
the works mentioned above, there are many other similar ones. For example, Berele
discussed a similar problem for the symplectic case in [29], and Sundaram for the orthogonal
case in [30].

In this paper, we will outline a new simple Young diagrammatic method for the
Kronecker products oD (n) and Sp(2m). Our procedure is mainly based on the induced
representation of the Brauer algelfa (n), which applies toO (r) and Sp(2m) because
of the well known Brauer—Schur-Weyl duality relation betweBp(n) and O(n) or
Sp(2m). This relation has already enabled us to derive the Clebsch—-Gordan and Racah
coefficients of the quantum groufg,(n) from the induction and subduction coefficients
of the Hecke algebras [31, 32], and Racah coefficient®0¢f) and Sp(2m) from the
subduction coefficients of the Brauer algebra [33].

In section 2, we will give a brief introduction to Brauer algebras. Induced representations
of the Brauer algebrdy, x Sy, 1 Dy(n) will be discussed in section 3, which are important
for our purposes. In section 4, we will outline a new simple Young diagrammatic method for
the decomposition of the Kronecker products @¢n) and Sp(2m). Concluding remarks
will be given in section 5.

2. Brauer algebra D¢ (n)

The Brauer algebr®; (n) is defined algebraically by 2— 2 generatorggs, g2, ..., gr-1,

e1, ez, ..., er_1} with the following relations:
8igi+18i = &i+18i8i+1 gigi=g& li—jl=2 (1a)
e gi =e ejgi—16; = e;. (1b)

Using these defining relations and by drawing pictures of link diagrams [34, 35], one can
also derive other useful ones. For example

eiej=eje; |i—jl=2 e? = ne (& —D%*g+1=0. (10)

It is easy to see thdlg1, g2, ..., gr—1} generate a subalgebs,, which is isomorphic to

the group algebra of the symmetric group; thatlis(n) > CS;. The properties oDy (n)

have been discussed by many authors [34, 35]. Based on these results, it is known that
D¢ (n) is semisimple, i.e. it is a direct sum of a full matrix algebra olgmwhenn is not

an integer or is an integer with > f — 1, otherwiseD,(n) is no longer semisimple. In

the following, we assume that the base fieldCiandn is an integer withn > f — 1. In

this case,Dy(n) is semisimple, and irreducible representation®gfrn) can be denoted by

a Young diagram withf, f — 2, f —4,...,1 or 0 boxes. An irrep oD;(n) with f — 2k

boxes is denoted ag];_x. The branching rule oDs(n) | Ds_1(n) is

[M -2 = Bpgopil 2

where ] runs through all the diagrams obtained by removing orX]Jfdontains less than
f boxes) adding a box tot]. Hence, the basis vectors @f;(n) in the standard basis can
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be denoted by

[Mf-2c  Ds(n) [Alr—2«
(] Dy_1(n) (1]
: : = 3)
[Pl Dy—ps1(n) [Pl
D] Dy vy

where p] is identical to the same irrep of;_,, Y,{;] is a standard Young tableau, and

M can be understood either as the Yamanouchi symbols or indices of the basis vectors in
the so-called decreasing page order of the Yamanouchi symbols. Procedures for evaluating
matrix elements og;, ande; withi =1,2,..., f — 1 in the standard basis (3) have been
given in [36] and [37]. It is obvious that (3) is identical to the standard basis vectd§s of
whenk = 0. In this case, all matrix elements af are zero, while the matrix elements of

gi can be obtained by the well known formula 8.

3. Induced representations ofD¢(n)

From the early work of Brauer [28] and recent studies [34, 35] one knows that there is
an important relation, the so-called Brauer—Schur—Weyl duality relation between the Brauer
algebraDs(n) and O (n) or Sp(2m). If G is the orthogonal grou@ (n) or symplectic group
Sp(2m), the corresponding centralizer algetBa(G) are quotients of Brauer'®,(n) or
D¢(—2m), respectively. We also need a special class of Young diagram, the so-galled
permissible Young diagram defined in [31]. A Young diagrari$ said to ben-permissible

if P,(n) # 0 for all subdiagrams{] < [1], where the subdiagramg:] can be obtained

from [A] by taking away appropriate boxes, aRgl;(n) is the dimension 0O (n) or Sp(2m)

for the irrep u]. A Young diagram [] is n-permissible if and only if

(i) its first two columns contain at mostboxes forn positive,
(ii) it contains at mostn columns forn = —2m a negative even integer,
(iii) its first two rows contain at most 2 n boxes forn odd and negative.

If these conditions are satisfied);(n) is isomorphic to B;(O(n)) for n positive, to

B¢ (0(2 — n)) for n negative and odd, and tB(Sp(2m)) for n = —2m < 0. In what

follows, we assume that all irreps to be discussednapermissible withn < f — 1 for

n > 0or—n < f—1for negative:. These condition imply that thB, (n) being considered
is semisimple.

Therefore, an irrep oBf(0(n)) or Bs(Sp(2m)) is simultaneously the same irrep of
O(n) or Sp(2m). However, the space d#(G) andG are different. The former is labelled
by its Brauer algebra indices, which operate in B)¢G) space, while the latter is labelled
by its tensor components of group. This is the so-called Brauer—Schur—Weyl duality
relation betweerB;(G) and G, whereG = O(n) or Sp(2m).

Hence, in order to discuss the Kronecker product®¢i) and Sp(2m) for the general
case

[a] x [r2] 4 ) {harar}[2] @

where{Ai1A1,A} is the number of occurrence of irrep]in the decompositioni;] x [A2], we
can consider induced representations of the Brauer algépra,Sy, 1+ Dy (n) for the same
decomposition given by (4). In this case, we only need to study irre@3,6f) induced
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by irreps ofS;, x S;,. The standard basis vectors ofi[;,, and J,],, for S, andS;, can
be denoted byr!:(w?)), and|Yl(w))), respectively, where

(wg):(lvzvvfl) (wg)z(fl+1?fl+2»sfl+f2) (5)

are indices in the standard tablea:! and v}

w21, respectively. The product of the two
basis vectors are denoted by

Y YBa (@), (@) = 172 (@) Y (D) ©)

mp > “mp

which is called a primitive uncoupled basis vector [31, 32, 34].
The left coset decomposition @, (n) with respect to the subalgeb$a x Sy, is denoted

by
Dr(n) =) ®OL(Sy x Sp) @)
wk

where the left coset representatiigd’ } have two types of operations. One is the order-
preserving permutations, which is the same as that for a symmetric group [31, 32]:

0470}, ) = (w1, ) ®
where

(w1) = (ay,az, ..., ap) (w2) = (ap41, apy2, -+ -5 a5) 9
with a1 < a2 < -+ < ay, ap41 < ap42 < -+ < ay, andg; represents any one of the
numbers 12,..., f. The other,{Q*>1}, containsk-time trace contractions between two

sets of indiceS(w;) and (wp). For example, inS, x S§; 1+ D3(n) for the outer product
[2] x [1], there are six elements D%} with

[0°%) = {1, g2, 8182} {01} = {ea, 102, €182} (10)

Let the number of operators #0¥} be i, and the dimensions of the irreps[, x [12]5,

be iy, hp,), Wherehp,,; with i = 1, 2, can be computed, for example, by using Robinson’s
formula for the symmetric grouf;. It is obvious that the total dimension including multiple
occurrences of the same irrep in the decomposition (4) is giveliby;hp,,;; namely

hhpgghpag =Y {Ahod} dim([A]: Dy (n)) (11)
A

where dim{[A]; Dy (n)) is the dimension of)] for D¢ (n), which was given in [29]. Hence,
applying thek Q* to the primitive uncoupled basis vector (6), we obtain all the uncoupled
basis vectors needed in the construction of the coupled basis vectaidaf D, (rn), which

can be denoted as

k
———
ok 1yl vyl (), () = Y11, Y2 (), (w2)) (12)

mi > “mp my > “mp
k

where (Eu—l)i(ba);) stands fork contractions between indices {w;) and (w;). However, all
contractions betweew1) or (w2) will be zero because the.[] with i = 1, 2, have exactly
fi boxes, i.e. in this case, the irrep;] of S, is the same irrep oDy (n). Therefore,
Sr, x Sy, can also be denoted d3y,(n) x Dy, (n) when the irreps);] for i = 1,2, have
exactly f; boxes. In what follows, we will always discuss this situation, and desigte Sy,
as Dy, (n) x Dy,(n) without further explanation.
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Finally, the basis vectors of.];_» can be expressed in terms of the uncoupled basis
vectors given by (12):

Mz Tip) = Y. Color ok 1vBal(wd), vid () (13)
where p is the multiplicity label needed in the outer-produdh]l, x [A2]s 1 [M]f—2.
v stands for other labels needed for the irrep;[», and the coefficienC,[nAl]rﬁ;fw is the
[A1]p x[A2] 5, 1 [A]f—2« induction coefficient (IDC) or the outer-product reduction coefficient
(ORC).

4. A Young diagrammatic method for the Kronecker products of O(n) and Sp(2m)

The analytical derivation or algorithm for the IDCs discussed in section 3 is not necessary
if only outer-products ofDy, (n) x Dy,(n) for irreps R1]y x [A2]s, are considered. It is
obvious in (12) that irreps withf — 2k boxes of Dy(n) can be induced from irreps of
Dy, (n) x Dg,(n). Whenk = 0, equation (12) is identical to that for the symmetric groups.
An important operation in (12) is performed BQ*} with k # 0. After k contractions the
uncoupled primitive basis vector ot{]5, x [A2]s, will be equivalent to the basis vectors of
[A1) =k X [AS) ks Where Ri];— with i = 1, 2 is any possible standard Young diagram
with f; — k boxes, which can be obtained fromy];, by deletingk boxes from };] in all
possible ways. Therefore, as far as representations are concerned, thififrep.} of

D¢ (n) can be obtained from the outer-prodyt;],—« x [A5] ,—} Of the symmetric group
St—k x S,—k. Thus, we obtain the following rules for the outer-product®gf(n) x Dy, (n):

Lemma 1.The outer-product rule foDy, (n) x Dy,(n) 1 Ds(n) for the decomposition
[l x [halp, 1) {harar)[A]
A

can be obtained diagrammatically by:

(i) Removing k boxes, wherek = 0,1,2,...,min(f1, fo), from [A], and Ro]y,
simultaneously in all possible ways under the following restrictions:

(a) Always keep the resultant diagrams]|._ with i = 1, 2 standard Young diagrams.
(b) No more than two boxes in the same column (row)Jg] jwith those in the same
row (column) in ;] can be removed simultaneously.
(ii) Applying the Littlewood rule for the outer-product reduction of the symmetric group to

the outer-product;] ;, —« x [A5]5,—«, and repeatedly doing so for eakh

What we need to explain is restriction (b). Consider a simple example which is
representative of the general case. Lef][= [2], [r2] = [1?], and QF be ak trace
contraction operator. According to our procedure, we have

Q1<Xﬁ>=<“x 7 )=( X)) (e

while

(S N (e N

The indicese and 8 in the boxes indicate the indices that are contracted with each other. It
is known that the trace contraction of two vectors results in the symmetrization of the tensor
components. Therefore, the trace contraction of anti-symmetric tensors is zero. However,
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the indices of thex part is not only symmetric but also anti-symmetric with those of ghe
part in (14). Hence, restriction (b) holds.

Finally, using the Brauer—Schur—Weyl duality relation betwdes(n) and O(n) or
Sp(2m), one discovers that lemma 1 also applies to the decompositions of the Kronecker
products ofO (n) or Sp(2m). Thus, we have the following lemma.

Lemma 2.The Kronecker product oD (n) or Sp(2m) for the decomposition given by (4)
can be obtained by using procedures (i) and (ii) of lemma 1, together with the following
modification rules.

For the groupO (n), wheren = 2/ or 2 + 1, (Sp(n), wheren = 2I), the resulting irrep

[A] = [A1, A2, .. Ay, 0] is non-standard ifp > . In this case, we need to remove boxes
from [A] along a continuous boundary with hook of length 2 n (2p — n — 2) and depth

x, wherex is counted by starting from the first column of] fto the right-most column that

the boundary hook reaches [12]. The resultant Young diagram will be admissible or set to
zero if, at any stage, the removal of the required hook leaves an irregular Young diagram.
Then, the resultant irreptJaioweq Can be denoted symbolically as

(—=)*[o] for O(n)
[)L]allowed =
(=)ol for Sp(2m)

where p] is obtained from {] by using the above modification rules. For example

[3%] for O(7)

@, 1 [37] for 0(4) 1)
—[20] for 0(2)
0 for 0(6), 0(5), andO(3)

which was illustrated by King [12]. In what follows, we give an example to show how this
method works.

Example. Find the Kronecker product [2 [11] for O(n) or Sp(2m).
First, we consider all possible diagrams with 0, 1, and (fhinf,) = 2 trace
contractions, which are

oo EEE e iy s N S e
(16)

Then, we need to compute the Kronecker products 2111], [11] x [1], [2] x [1], and
[1] x [0], which can be obtained by using the Littlewood rule to(n). We get

] ]
X —, —

[21] x [11] = [32] + [221] + [2111] + [311] (17a)
[20] x [1] = [30] + [21] (17b)
[11] x [1] = [21] + [111] 17)
[1] x [0] = [1]. (17d)

Finally, summing up all the irreps appearing on the right-hand sides of equatioa)s- (17
(17d), we obtain

[21] x [11] = [32] 4 [221] + [2111] + [311] + [30] + 2[21] + [111] + [10] (18)
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which is valid for O(n) whenn > 8 and Sp(2m) whenm > 4. Using the modification
rules of lemma 2, we can easily obtain the following results

[210] x [110] = [320] + [221] + [211] + [311] 4 [300] + 2[210]
+[111]+[100]  for O(7) (19)
[210] x [110] = [320] + [221] + 3[210] + [311] 4 [300] + [111]

+[100] for O(6) (19)
[21] x [11] = [32] + [22] + [20] + [31] + [30] + 2[21] + [11] 4 [10] for O(5)
(19c)
[21] x [11] = [32] + 2[30] + 2[21] + 2[10] for 0(4). (19d)
In the above computation, the following results were used:
[211] for O(7)
[21] for O(6)
[2111]= (20a)
[20] for O(5)
[10] for O(4)
{ [22] for O(5)
[221] = (20b)
0 for 0(4)

[31] for O(5)
[311] = (20c)
[30] for O(4)
which were obtained from modification rules given in lemma 2. In addition

[210] x [110] = [320] + [221] + [311] + [300] + 2[210]+ [111] +[100] for Sp(6)

(21a)
[21] x [11] = [32] + [30] + [21] + [10] for Sp(4) (21b)
where the following modification rule were used:
{ 0 for Sp(6)
[2111] = (22a)
—[21] for Sp(4)
[221]=[311] =[111]=0 for Sp(4). (22v)

5. Concluding remarks

In this paper, a new simple Young diagrammatic method for the decomposition of the
Kronecker products o (r) and Sp(2m) is outlined based on the induced representation
theory of D;(n). This algebra was proposed by Brauer at the end of the 1930s. His aim
was indeed to solve the decomposition problem of the Kronecker produatsof and
Sp(2m). On the other hand, because the representatiorn3,6f) are the same as those

of the Birman—-Wenz| algebraS,(r, ¢) wherer andg are not roots of unity, the method
also applies to the quantum groupy (n) and Sp,(2m) whereg is not a root of unity.
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The induced representations Df;(n) presented in section 3 can also be used to derive the
Clebsch—Gordan coefficients 60 (n) when the IDCs ofDy, (n) x Dy, (n) are evaluated,
which will be discussed in our next paper.

It should be stated that although our Young diagrammatic method for the decomposition
of the O(n) and Sp(2m) Kronecker products is derived from the induced representation
theory of Brauer algebras with the help of the Brauer—Schur-Weyl duality relation, the final
results being the same as those derived by Littlewood and Newell based on character theory
and Schur functions [18, 19]. In [18], the main results on how to obtain the Kronecker
product of O(n) and Sp(2m) were achieved through the combinatorials of a certain type
of S-function. However, in [18], only cases with> r were considered, whete= 2p or
2p+1 for O(n), andp = m for Sp(2m), andr is the number of rows for the corresponding
irrep. In this case, no modification rule is needed, which is the same as ours. M\den
in a Young diagram, the final diagram with a number of rows greater thaill become
a non-standard irrep; the correspondence between these non-standard diagrams and the
corresponding standard ones with signs in the front of the diagrams was first studied by
Newell in [19], where the so-called modification rules proposed by King were given in a
much simper manner [12]. This fact is now summarized by lemma 2 of this paper.

On the other hand, the Young tableau method proposed by Littelmann [24] and crystal
graph base given in [25] are related to the weight space of the corresponding Lie groups
(algebras). Therefore, these methods do not use the representation theory of symmetric
groups at all. However, the final results on the decomposition of the Kronecker product
of O(n) and Sp(2m) are the same as those obtained by our Young diagrammatic method
derived from Brauer algebras.

Furthermore, this method can also be applied to the Kronecker produsi® @ + 1)
for any irreps ands O (2/) for their irreps f1, A2, ..., A, 0] for k < I. If k =1, the irrep of
O(2) [r1, A2, ..., A] With A, #£ 0 reduces to irreps o O (2/) denoted by {1, A, ..., A«]
and Py, A2, ..., —X], the dimensions of which are the same. In this case, one should
be cautious and use this method. The dimension formuls ¢r) is always helpful in
checking the final results.

Finally, it should be noted that the method applies only to tensor or ‘true’ representations
of O(n). The spinor representations Of(n) are related to spinor representations of Brauer
algebras according to the Brauer—Schur—Weyl duality relation, which still need to be studied
further.
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